Problem Set 9.04
Predicting if a Precipitate Will Form

Complete these problems on a separate sheet of paper.

1. A saturated solution of silver phosphate is found to contain 1.3×10^{-4} M silver ion and 4.3×10^{-5} M phosphate ion. What is the K_{sp} of Ag_3PO_4?

2. A solution of FeCl_2 is 1.3×10^{-4} M. It is mixed with a solution of 2.4×10^{-6} M Na_2S solution.
 a. What are the formulas of the two possible precipitates that could form?
 b. Will a precipitate form when 10.0 mL of each of the two solutions are mixed? $K_{sp} \text{FeS} = 4.0 \times 10^{-19}$

3. Determine if a precipitate will form when 25.0 mL of 0.0550 M $\text{Mg(NO}_3)_2$ is mixed with 25.0 mL of 0.0150 M NaOH. $K_{sp} \text{Mg(OH)}_2 = 8.9 \times 10^{-12}$

4. Two solutions are mixed. Predict if a precipitate will form if 10.0 mL of 0.010 M NaF is mixed with 10.0 mL of 0.010 M $\text{Ba(NO}_3)_2$. $K_{sp} \text{BaF}_2 = 2.4 \times 10^{-5}$.

5. Two solutions are mixed. Predict if a precipitate will form if 25.0 mL of 0.0020 M silver nitrate solution, AgNO_3, is mixed with 25.0 mL of 0.0010 M sodium bromate solution, NaBrO_3. $K_{sp} \text{AgBrO}_3 = 5.30 \times 10^{-5}$

6. Two solutions are mixed. Predict if a precipitate will form if 25.0 mL of 0.0020 M barium iodide BaI_2, is mixed with 25.0 mL of 0.0010 M lead (II) nitrate solution, $\text{Pb(NO}_3)_2$. $K_{sp} \text{PbI}_2 = 7.1 \times 10^{-9}$

7. Two solutions are mixed. Predict if a precipitate will form if 5.0 mL of 0.0015 M lead (II) nitrate, $\text{Pb(NO}_3)_2$, is mixed with 5.0 mL of 0.0025 M barium hydroxide solution, Ba(OH)_2. $K_{sp} \text{Pb(OH)}_2 = 1.43 \times 10^{-20}$

8. Two solutions are mixed. Predict if a precipitate will form if 125.0 mL of 0.0015 M strontium chlorate, $\text{Sr(ClO}_3)_2$ is mixed with 75.0 mL of 2.5×10^{-5} M sodium arsenate solution, Na_3AsO_4. $K_{sp} \text{Sr}_3(\text{AsO}_4)_2 = 4.29 \times 10^{-19}$